Sabtu, 31 Januari 2015

MACAM MACAM ENERGI TAK TERBARUKAN

MACAM ENERGI TAK TERBARUKAN

1. Energi tak terbarukan (Non renewable energy)
Yang dimaksud energi tak terbarukan adalah sumber energi tersebut tidak tersedia secara terus menerus, tidak kerkesinambungan, dan pada saatnya sumber energi tersebut akan habis. Yang digolongkan ke dalam jenis ini adalah sumber energi fosil seperti minyak bumi dan batubara.
Kekurangan lain dari energi fosil ini adalah, harganya yang semakin melambung tinggi dari waktu ke waktu seiring bertambahnya populasi manusia. Selain itu energi fosil ini dianggap tidak bersahabat terhadap lingkungan. Hasil pembakarannya sangat mencemari lingkungan. Dengan alasan ketiga kekurangan ini orang pun berlomba-lomba mencari sumber energi alternatif yang tidak memiliki kekurangan seperti energi fosil tersebut di atas, yaitu: tersedia terus-menerus, harga yang stabil, dan bersahabat terhadap lingkungan.
SUMBER: https://rosasiwiwidikinanthi.wordpress.com/

MACAM MACAM ENERGI TERBARUKAN

MACAM MACAM ENERGI TERBARUKAN

Macam-macam Energi Baru Terbarukan
Penggunaan energi alternatif akan memberi perlindungan suatu bangsa pada kenaikan harga bahan bakar fosil, serta mengurangi ketergantungan pada negara-negara lain untuk pasokan minyak. Sumber energi alternatif juga akan membatasi konsumsi sumber energi tak terbarukan seperti minyak bumi dan batubara, mengurangi pencemaran lingkungan & efek negatif pada sumber daya alam seperti air, udara, hutan, dll.
Peningkatan penggunaan sumber energi alternatif pada akhirnya akan menciptakan lapangan kerja baru sehingga mempercepat pertumbuhan ekonomi.
Berikut ini adalah macam-macam sumber energi alternatif.
1. Energi Biomassa. Materi biologis yg masih hidup atau telah mati disebut biomassa, umum digunakan sebagai sumber bahan bakar atau untuk produksi industrial. Tanaman hidup, pohon mati, dan serpihan kayu merupakan bagian dari bio massa.
2. Gas Alam. Sebelum digunakan, biasanya dikompresikan terlebih dahulu hingga berubah wujud menjadi cair. Pembakaran gas alam memang masih menghasilkan gas rumah kaca, namun dibandingkan bahan bakar lain seperti bensin atau solar, emisi gas alam dianggap masih lebih bersih.
3. Panas Bumi. Sumber energi alternatif yg ekonomis, dapat diandalkan, dan ramah lingkungan. Panas bumi merupakan sumber energi yg dapat diperb
Macam-macam Energi Baru Terbarukan
Penggunaan energi alternatif akan memberi perlindungan suatu bangsa pada kenaikan harga bahan bakar fosil, serta mengurangi ketergantungan pada negara-negara lain untuk pasokan minyak. Sumber energi alternatif juga akan membatasi konsumsi sumber energi tak terbarukan seperti minyak bumi dan batubara, mengurangi pencemaran lingkungan & efek negatif pada sumber daya alam seperti air, udara, hutan, dll.
Peningkatan penggunaan sumber energi alternatif pada akhirnya akan menciptakan lapangan kerja baru sehingga mempercepat pertumbuhan ekonomi.
Berikut ini adalah macam-macam sumber energi alternatif.
1. Energi Biomassa. Materi biologis yg masih hidup atau telah mati disebut biomassa, umum digunakan sebagai sumber bahan bakar atau untuk produksi industrial. Tanaman hidup, pohon mati, dan serpihan kayu merupakan bagian dari bio massa.
2. Gas Alam. Sebelum digunakan, biasanya dikompresikan terlebih dahulu hingga berubah wujud menjadi cair. Pembakaran ‪gas alam memang masih menghasilkan gas rumah kaca, namun dibandingkan bahan bakar lain seperti bensin atau solar, emisi gas alam dianggap masih lebih bersih.
3. Panas Bumi. Sumber energi alternatif yg ekonomis, dapat diandalkan, dan ramah lingkungan. panas bumimerupakan sumber energi yg dapat diperbarui sehingga bebas dari isu kelangkaan.
4. Pembangkit Listrik Tenaga Air. Ini mungkin masih menjadi sumber energi alternatif yg populer. Tenag merupakan sumber energi terbarukan sekaligus‪ ramah lingkungan karena tidak menghasilkan limbah.
5. Tenaga Angin. Turbin angin lazim digunakan untuk mengubah energi angin menjadi listrik. Catatan menunjukkan bahwa sekitar 1,5% pasokan listrik dunia dihasilkan oleh tenaga angin.
6. Tenaga Matahari, umum digunakan sebagai pembangkit listrik. Perkembangan teknologi memungkinkan sel suryasemakin ringan, mudah diangkut, dan lebih efisien.
7. Energi Gelombang Laut, bisa digunakan untuk menghasilkan listrik. Meskipun memiliki potensi besar, teknologi ini belum banyak digunakan.
8. Energi Pasang Surut, belum banyak digunakan. Namun, para ahli melihat pasang surut sebagai sumber energi alternatif yang menjanjikan di masa depan. Pasang surut dianggap menjanjikan karena mudah diprediksi tidak seperti energi matahari dan angin.
SUMBER: https://rosasiwiwidikinanthi.wordpress.com/

SISTEM TRANSPORTASI PADA TUMBUHAN

SISTEM TRANSPORTASI PADA TUMBUHAN

SISTEM TRANSPORTASI PADA TUMBUHAN
  1. Permeabilitas Membran Sel
    Sel tumbuhan dibatasi oleh dua lapis pembatas yang sangat berbeda komposisi dan strukturnya. Lapisan terluar adalah dinding sel yang tersusun atas selulosa, lignin, dan polisakarida lain. Dinding sel memberikan kekakuan dan memberi bentuk sel tumbuhan. Pada beberapa bagian, dinding sel tumbuhan terdapat lubang yang berfungsi sebagai saluran antara satu sel dengan sel lainnya. Lubang ini disebut plasmodesmata, berdiameter sekitar 60 nm, sehingga dapat dilalui oleh molekul dengan berat molekul sekitar 1000 Dalton. Lapisan dalam sel tumbuhan adalah membran sel.Membran sel terdiri atas dua lapis molekul fosfolipid. Bagian ekor dengan asam lemak yang bersifat hidrofobik (non polar), kedua lapis molekul tersebut saling berorientasi kedalam, sedangkan bagian kepala bersifat hidrofilik (polar), mengarah ke lingkungan yang berair. Komponen protein terletak pada membran dengan posisi yang berbeda-beda. Beberapa protein terletak periferal, sedangkan yang lain tertanam integral dalam lapis ganda fosfolipid. Membran seperti ini juga terdapat pada berbagai organel di dalam sel, seperti vakuola, mitokondria, dan kloroplas.
    Komposisi lipid dan protein penyusun membran bervariasi, bergantung pada jenis dan fungsi membran itu sendiri. Namun demikian membran mempunyai ciri-ciri yang sama, yaitu bersifat selektif permeabel terhadap molekul-molekul. Air, gas, dan molekul kecil hidrofobik secara bebas dapat melewati membran secara difusi sederhana. Ion dan molekul polar yang tidak bermuatan harus dibantu oleh protein permease spesifik untuk dapat diangkut melalui membran dengan proses yang disebut difusi terbantu (fasilitated diffusion). Kedua cara pengangkutan ini disebut transpor pasif. Untuk mengangkut ion dan molekul dalam arah yang melawan gradien konsentrasi, suatu proses transpor aktif harus diterapkan. Dalam hal ini protein aktifnya memerlukan energi berupa ATP, ataupun juga digunakan cara couple lewat proses antiport dan symport.
    Permeabilitas membran tergantung pada fluiditas inti hidrofobik membran dan aktivitas protein pengangkutnya. Oleh karena itu, keadaan lingkungan yang dapat mengganggu keduanya akan mempengaruhi permeabilitas membran terhadap suatu solut.
    II. Transportasi Tumbuhan
    Transportasi tumbuhan adalah proses pengambilan dan pengeluaran zat-zat ke seluruh bagian tubuh tumbuhan. Pada tumbuhan tingkat rendah (misal ganggang) penyerapan air dan zat hara yang terlarut di dalamnya dilakukan melalui seluruh bagian tubuh. Pada tumbuhan tingkat tinggi (misal spermatophyta) proses pengangkutan dilakukan pembuluh pengangkut yang terdiri dari xylem dan phloem.
    Tumbuhan memperoleh bahan dari lingkungan untuk hidup berupa O2, CO2, air dan unsur hara. Kecuali gas O2 dan CO2 zat diserap dalam bentuk larutan ion. Mekanisme proses penyerapan dapat berlangsung karena adanya proses imbibisi, difusi, osmosis dan transpor aktif.
    A. Imbibisi
    Merupakan penyusupan atau peresapan air ke dalam ruangan antar dinding sel, sehingga dinding selnya akan mengembang. Misal masuknya air pada biji saat berkecambah dan biji kacang yang direndam dalam air beberapa jam.
    B.Difusi
    Difusi merupakan perpindahan zat-zat atau molekul-molekul dari daerah konsentrasi tinggi (hipertonik) ke konsentrasi rendah (hipotonik). Misal pengambilan O2 dan pengeluaran CO2 saat pernafasan, penyebaran setetes tinta dalam air.
    CO2,O2 H2O
    Difusi CO2,O2 dan H2O
    Difusi dapat berlangsung dalam sel-sel hidup, termasuk pada sel tumbuhan. Telah diketahui bahwa isi sel hidup adalah protoplasma yang merupakan satu larutan. Tubuh tumbuhan dibangun oleh sel-sel tumbuhan yang setiap selnya memiliki dinding sel dari selulosa. Dinding tersebut umumnya bersifat permeabel sehingga dapat dilewati air dan zat-zat telarut di dalamnya.
    Difusi yang tergantung pada suatu mekanisme transpor khusus dari membran seperti enzim permease disebut difusi terbantu, misalnya difusi ADP ke dalam dan difusi ATP ke luar dari mitokondria.
    Gerakan partikel dari tempat dengan potensial kimia lebih tinggi ke tempat dengan potensial kimia lebih rendah karena energi kinetiknya sendiri sampai terjadi keseimbangan dinamis.
    • Faktor yang mempengaruhi difusi :
    1. Suhu, makin tinggi difusi makin cepat
    2. BM makin besar difusi makin lambat
    3. Kelarutan dalam medium, makin besar
    difusi makin cepat
    4. Beda potensial kimia, makin besar
    beda difusi makin cepat
    C. Osmosis
    Osmosis adalah kasus khusus dari transpor pasif, dimana molekul air berdifusi melewati membran yang bersifat selektif permeabel. Dalam sistem osmosis, dikenal larutan hipertonik (larutan yang mempunyai konsentrasi terlarut tinggi), larutan hipotonik (larutan dengan konsentrasi terlarut rendah), dan larutan isotonik (dua larutan yang mempunyai konsentrasi terlarut sama). Jika terdapat dua larutan yang tidak sama konsentrasinya, maka molekul air melewati membran sampai kedua larutan seimbang. Dalam proses osmosis, pada larutan hipertonik, sebagian besar molekul air terikat (tertarik) ke molekul gula (terlarut), sehingga hanya sedikit molekul air yang bebas dan bisa melewati membran. Sedangkan pada larutan hipotonik, memiliki lebih banyak molekul air yang bebas (tidak terikat oleh molekul terlarut), sehingga lebih banyak molekul air yang melewati membran. Oleh sebab itu, dalam osmosis aliran netto molekul air adalah dari larutan hipotonik ke hipertonik.
    Proses osmosis juga terjadi pada sel hidup di alam. Perubahan bentuk sel terjadi jika terdapat pada larutan yang berbeda. Sel yang terletak pada larutan isotonik, maka volumenya akan konstan. Dalam hal ini, sel akan mendapat dan kehilangan air yang sama. Banyak hewan-hewan laut, seperti bintang laut (Echinodermata) dan kepiting (Arthropoda) cairan selnya bersifat isotonik dengan lingkungannya. Jika sel terdapat pada larutan yang hipotonik, maka sel tersebut akan mendapatkan banyak air, sehingga bisa menyebabkan lisis (pada sel hewan), atau turgiditas tinggi (pada sel tumbuhan). Sebaliknya, jika sel berada pada larutan hipertonik, maka sel banyak kehilangan molekul air, sehingga sel menjadi kecil dan dapat menyebabkan kematian. Pada hewan, untuk bisa bertahan dalam lingkungan yang hipo- atau hipertonik, maka diperlukan pengaturan keseimbangan air, yaitu dalam proses osmoregulasi.
    D. Traspor aktif
    Transpor aktif adalah pengangkutan zat dengan bantuan energi. Sumber energi yang digunakan berasal dari ATP dan ADP. Contoh, pengangkutan glukosa dalam tubuh. Glukosa tidak dapat menembus membran sel sebelum diaktifkan oleh ATP atau ADP. Dengan mengubah glukosa menjadi glukosa fosfat. Untuk membentuk glukosa fosfat diperlukan energi pengaktifan yang tersimpan dalam ATP.
    ATP ADP + P + Energi
    Glukosa + P + Energi Glukosafosfat
    Pengangkutan lintas membran dengan menggunakan energi ATP, melibatkan pertukaran ion Na+ dan K+ (pompa ion) serta protein kontraspor yang akan mengangkut ion Na+ bersama melekul lain seperti asam amino dan gula. Arahnya dari daerah berkonsentrasi tinggi ke konsentrasi rendah. Misal perpindahan air dari korteks ke stele.
    III. Pengangkutan Zat Melalui Xylem
    Pengangkutan zat pada tumbuhan dibedakan menjadi :
    A. Pengangkutan Ekstravaskuler
    Pengangkutan air dan garam mineral di luar berkas pembuluh pengangkut. Pengangkutan ini berjalan dari sel ke sel dan biasanya dengan arah horisontal. Pengangkutan air dengan arah horizontal, mulai dari epidermis bulu-bulu akar, kemudian masuk ke lapisan korteks, lalu ke endodermis dan sampai ke berkas pembuluh angkut dalam air.
    Skema :
    Bulu akar epidermis korteks endodermis xylem.
    Pada saat air dan mineral melalui jaringan-jaringan tersebut, ada dua kemungkinan jalan yang dilalui, pertama, air dan mineral akan melalui ruang antar sel dalam setiap jaringan. Pengangkutan semacam ini disebut Apoplast. Kedua, air dan mineral bergerak melalui jalur dalam sel yaitu sitoplasma. Air akan masuk ke dalam sel dan berpindah dari satu sel ke sel yang lain disebut Simplast. Pengangkutan secara Simplast dapat masuk ke stele melalui sel penerus pada endodermis, sedangkan pengangkutan secara apoplast tidak dapat sampai ke stele karena terhalang oleh sel U endodermis.
    Penganngkutan ekstravaskluler dibedakan :
    – transportasi/ lintasan apoplas : menyusupnya air tanah secara bebas atau transpor pasif melalui semua bagian tak hidup dari tumbuhan (dinding sel dan ruang antar sel)
    – transportasi/ lintasan simplas : bergeraknya air dan garam mineral melalui bagian hidup dari sel tumbuhan (sitoplasma dan vakoula).
    B. Pengangkutan Intravaskuler
    Pengangkutan intravaskuler adalah proses pengangkutan zat yang terjadi di dalam pembuluh angkut, yaitu dalam xilem dan floem. Proses pengangkutan dalam pembuluh angkut terjadi secara vertikal.
    Air dan mineral dalam tanah masuk melalui buluh akar – epidermis – korteks – endodermis – perisikel dan akhirnya masuk ke xilem. Di dalam pembulu xilem air dam mineral di bawah naik ke seluruh tubuh termasuk ke daun.
    Air dan garam mineral akan diangkut ke daun melalui pembuluh kayu (xylem). Komponen utama penyusun xylem adalah elemen pembuluh (trakea) dan trakeid.
    Trakea dan trakeid merupakan sel-sel yang mati karena tidak mempunyai sitoplasma dan hanya mempunyai dinding sel.
    Sel trakea terdiri atas tabung yang berdinding tabal dan membentuk suatu pembuluh.
    Sel trakeid merupakan sel dasar penyusun xylem, yang terdiri dari sel memanjang dan berdinding keras karena mengandung lignin. Pada beberapa tempat dinding sel trakeid terdapat bagian-bagian yang tidak menebal yang disebut noktah.
    Selain trakea dan trakeid xylem juga mengandung sel parenkim (parenkim kayu) yang merupakan sel hidup dan berfungsi untuk menyimpan bahan makanan. Xylem juga mengandung serabut kayu yang berfungsi sebagai penguat (penyokong)
    Yang menyebabkan air di dalam xilem dapat bergerak ke atas melawan gravitasi adalah :
    – Daya kapilaritas :
    Pembuluh xylem yang terdapat pada tumbuhan dianggap sebagai pipa kapiler. Air akan naik melalui pembuluh kayu sebagai akibat dari gaya adhesi antara dinding pembuluh kayu dengan molekul air.
    – Daya tekan akar :
    Epidermis akan menyerap air dari dalam tanah secara terus-menerus mengakibatkan kadar air dan tekanan turgor akar meningkat. Peningkatan kadar air pada ujung akar menyebabkan perbedaan konsentrasi antara sel pada ujung akar dan sel – sel yang berada di atasnya. Hal ini menyebabkan air akan berpindah dari sel – sel yang berada diatasnya, dan akhirnya air terdorong ke jaringan xilem yang berada diatsnya.
    Tekanan akar pada setiap tumbuhan berbeda-beda. Besarnya tekanan akar dipengaruhi besar kecil dan tinggi rendahnya tumbuhan (0,7 – 2,0 atm). Bukti adanya tekanan akar adalah pada batang yang dipotong, maka air tampak menggenang dipermukaan tunggaknya.
    – Daya isap daun :
    Disebabkan adanya penguapan (transpirasi) air dari daun yang besarnya berbanding lurus dengan luas bidang penguapan (intensitas penguapan). Dengan demikian konsentrasi sel yang berada di daun cenderung lebih tinggi di bandingkan dengan konsentrasi sel pada bagian tubuh yang lain. Perbedaan konsentrasi ini akan mendorong perpindahan air dari sel-sel yang berada dibawahnya naik ke sel-sel daun. Jadi adanya penguapan melalui daun menyebabkan aliran air dari bawah ke atas. Kemampuan inilah yamg di sebut daya isap daun.
    – Pengaruh sel-sel yang hidup :
    Perjalanan air dari akar hingga ke daun di bantu oleh sel-sel hidup yang ada di sekitar xilem, yaitu sel – sel parenkim kayu dan sel-sel jari empulur.
    Tumbuhan mengeluarkan cairan dari tubuhnya melalui 3 proses, yaitu :
    1. Transpirasi
    Adalah terlepasnya air dalam bentuk uap air melalui stomata dan kutikula ke udara bebas (evaporasi). Transpirasi dipengaruhi oleh :
    Faktor luar, meliputi :
    – kelembaban udara : semakin tinggi kelembaban udara maka transpirasi semakin lambat. Pada saat udara lembab transpirasi akan terganggu, sehingga tumbuhan akan melakukan gutasi
    – suhu udara : semakin tinggi suhu maka transpirasi semakin cepat.
    – intensitas cahaya : semakin banyak intensitas cahaya maka transpirasi semakin giat.
    – kecepatan angin : semakin kencang angin maka transpirasi semakin cepat.
    – kandungan air tanah : semakin banyak air tanah penguapan semakin cepat.
    – angin : semakin cepat angin bertiup, maka penguapan semakin cepat
    Faktor dalam, meliputi :
    – ukuran (luas) daun
    – tebal tipisnya daun
    – ada tidaknya lapisan lilin pada permukaan daun
    – jumlah stomata
    – jumlah bulu akar (trikoma)
    Jadi semakin cepat laju transpirasi berarti semakin cepat pengangkutan air dan zat hara terlarut, demikian pula sebaliknya. Alat untuk mengukur besarnya laju transpirasi melalui daun disebut fotometer atau transpirometer.
    2. Gutasi
    Adalah pengeluaran air dalam bentuk tetes-tetes air melalui celah-celah tepi atau ujung tulang tepi daun yang disebut hidatoda/ gutatoda/ emisarium. Terjadi pada suhu rendah dan kelembaban tinggi sekitar pukul 04.00 sampai 06.00 pagi hari. Di alami pada tumbuhan famili Poaceae (padi, jagung, rumput, dll)
    3. Perdarahan
    Adalah pengeluaran air cairan dari tubuh tumbuhan berupa getah yang disebabkan karena luka atau hal-hal lain yang tidak wajar. Misalnya pada penyadapan pohon karet dan pohon aren.
    IV. pengangkutan melalui floem
    Air dan zat terlarut yang diserap akar diangkut menuju daun akan dipergunakan sebagai bahan fotosintesis yang hasilnya berupa zat gula/ amilum/ pati. Pengangkutan hasil fotosintesis berupa larutan melalui phloem secara vaskuler ke seluruh bagian tubuh disebut translokasi.
    Untuk membuktikan adanya pengangkutan hasil fotosintesis melewati phloem dapat dilihat dari pada proses pencangkokan. Batang yang telah kehilangan kulit (phloem) mengalami hambatan pengangkutan akibat terjadinya timbunan makanan yang dapat memacu munculnya akar apabila bagian batang yang terkelupas kulitnya tertutup tanah yang selalu basah.
    Beberapa tumbuhan menyimpan hasil fotosintesis pada akarnya atau batangnya. Pada umumnya jaringan phloem tersusun oleh 4 komponen, yaitu :
    – buluh tapis
    – sel pengiring
    – parenkim phloem
    – serabut-serabut                                                                                                                                                                            Sumber: http://mahranzaim15.blogspot.com/2012/11/sistem-transportasi-pada-tumbuhan.html 

METABOLISME SEL

METABOLISME SEL

Metabolisme sel adalah susunan dari proses kimia yang memungkinkan suatu organisme untuk merespon lingkungan, mengekstrak energi, tumbuh, berkembang biak serta mempertahankan dirinya. Proses metabolisme sel dikelompokkan ke dalam proses katabolik, yang terlibat dengan ekstraksi energi, dan proses anabolik, yang melibatkan penggunaan energi untuk pertumbuhan dan perbaikan jaringan. Dalam sel, asam nukleat, protein, karbohidrat dan lemak adalah molekul utama yang terlibat dalam metabolisme sel.

Asam nukleat

Metabolisme Sel
Inti dari sel – dan kadang-kadang sitoplasma – mengandung asam nukleat, yang merupakan perpustakaan informasi yang mengarahkan serta menentukan fungsi utama dari sel. Ada dua jenis asam nukleat dalam sel: DNA serta RNA. DNA ditemukan dalam nukleus dan template dari mana RNA dibuat. RNA diubah untuk menjadi mRNA segera setelah itu dibuat, ia meninggalkan nukleus ke sitoplasma di mana ia digunakan untuk sintesis protein.

Protein

Sintesis protein terjadi di sitoplasma dan difasilitasi oleh mRNA yang menyediakan instruksi untuk membuat protein tertentu. Protein hanya rantai asam amino. Ketika tubuh mendorong proses anabolik dalam sel, sintesis protein meningkat, proses anabolik terhalang bila ada kekurangan protein dan asupan kalori. Ketika energi rendah dalam tubuh Anda, daripada membuat protein menggunakan energi yang tersedia, protein dapat dipecah untuk melepaskan energi untuk sel – sebuah proses katabolik.

Karbohidrat

Karbohidrat, atau pati, adalah sumber energi yang paling tersedia untuk tubuh, mereka dengan cepat dimetabolisme untuk melepaskan energi untuk tubuh. Panjang merantai atau kompleks karbohidrat juga dikenal sebagai polisakarida, mereka terdiri dari unit kecil yang disebut monosakarida. Glukosa adalah monosakarida yang lebih disukai dan yang paling penting dalam tubuh, monosakarida lain termasuk fruktosa dan galaktosa. Glikogen merupakan bentuk penyimpanan glukosa.

Lemak

Lemak yang terkandung dalam adiposit atau sel-sel lemak, terutama bentuk penyimpanan energi dalam tubuh. Setiap gram lemak menyediakan dua kali lebih banyak kalori protein atau karbohidrat. Lemak cenderung menumpuk di tubuh selama kondisi peningkatan kalori dan asupan lemak. Sebuah gaya hidup juga mendorong penumpukan lemak karena lebih sedikit energi yang digunakan oleh tubuh. Lemak dipecah saat tubuh mengalami kekurangan pemasokan karbohidrat atau pengalaman masalah dengan metabolisme karbohidrat. Diet untuk menurunkan berat badan adalah salah satu cara untuk membentuk ketidakcukupan karbohidrat, diabetes mellitus adalah gangguan yang paling penting dari metabolisme karbohidrat.
Sumber: http://www.sridianti.com/apakah-itu-metabolisme-sel.html

SUHU DAN PENGUKURAN

MACAM-MACAM TERMOMETER

MACAM – MACAM TERMOMETER
1. termometer alkohol
2. termometer basal
3. termometer merkuri
4. termometer oral
5. termometer Galileo
6. termometer infra merah
7. termometer cairan kristal
8. termistor
Termometer alkohol
Termometer alkohol adalah termometer yang menggunkan alkohol sebagai media pengukur, yang merupakan alternatif dari termometer air raksa dengan fungsi yang sama. Tetapi tidak sama seperti air raksa dalam termometer kaca. Isi termometer alkohol tidak beracun dan akan menguap dengan cukup cepat. Ruang di bagian atas cairan merupakan campuran dari nitrogen dan uap dari cairan. Dengan meningkatnya suhu maka volumenya naik. Cairan yang digunakan dapat berupa etanol murni atau asetat isoamyl, tergantung pada produsen dan pekerjaan yang berhubungan dengan suhu. Karena termometer ini adalah transparan, maka cairan yang dibuat harus terlihat dengan penambahan pewarna merah atau biru. Thermometer ini hanya bisa mengukur suhu badan makhluk hidup (manusia dan hewan). Thermometer ini tidak bisa mengukur yang tinggi suhunya diatas 78°C.
Satu setengah dari gelas yang mengandung kaplier biasanya diberi label yang berlatar belakang bewarna putih dan kuning untuk membaca skala. Dalam penggunaan termometer alkohol ini diatur oleh titik didih cairan yang digunakan. Batas dari termometer etanol ini adalah 78° C, dan bermanfaat untuk mengukur suhu di siang hari, malam hari dan mengukur suhu tubuh. Thermometer alkohol ini adalah yang paling banyak digunakan karena bahaya yang ditimbulkan sangat kecil ketika terjadi kasus kerusakan pada termometer.
TERMOMETER INFRA MERAH
Termometer Infra Merah menawarkan kemampuan untuk mendeteksi temperatur secara optik – selama objek diamati, radiasi energi sinar infra merah diukur, dan disajikan sebagai suhu. Mereka menawarkan metode pengukuran suhu yang cepat dan akurat dengan objek dari kejauhan dan tanpa disentuh – situasi ideal dimana objek bergerak cepat, jauh letaknya, sangat panas, berada di lingkungan yang bahaya, dan/atau adanya kebutuhan menghindari kontaminasi objek (seperti makanan/alat medis/obat-obatan/produk atau test, dll.). Produk pengukur suhu infra merah tersedia di pasaran, Mulai dari yang fleksibel hingga fungsi-fungsi khusus/Termometer standar (seperti gambar), hingga sistem pembaca yang lebih komplek dan kamera pencitraan panas. Ini adalah citra/gambar dari termometer infra merah khusus industri yang digunakan memonitor suhu material cair untuk tujuan quality control pada proses manufaktur.
Termometers Infra Merah mengukur suhu menggunakan radiasi kotak hitam (biasanya infra merah) yang dipancarkan objek. Kadang disebut termometer laser jika menggunakan laser untuk membantu pekerjaan pengukuran, atau termometer tanpa sentuhan untuk menggambarkan kemampuan alat mengukur suhu dari jarak jauh. Dengan mengetahui jumlah energi infra merah yang dipancarkan oleh objek dan emisi nya, Temperatur objek dapat dibedakan.
Desain utama terdiri dari lensa pemfokus energi infra merah pada detektor, yang mengubah energi menjadi sinyal elektrik yang bisa ditunjukkan dalam unit temperatur setelah disesuaikan dengan variasi temperatur lingkungan. Konfigurasi fasilitas pengukur suhu ini bekerja dari jarak jauh tanpa menyentuh objek. Dengan demikian, termometer infra merah berguna mengukur suhu pada keadaan dimana termokopel atau sensor tipe lainnya tidak dapat digunakan atau tidak menghasilkan suhu yang akurat untuk beberapa keperluan.
Termometer Galileo
Termometer Galileo (atau termometer Galilea), dinamai fisikawan Italia, Galileo Galilei, adalah termometer yang terbuat dari gelas silinder tertutup berisi cairan bening dan serangkaian benda yang kerapatannya sedemikian rupa sehingga mereka naik atau turun sesuai perubahan suhu.
 Ciri desain
Di dalam cairan digantungkan sejumlah beban. Umumnya beban tersebut dilekatkan pada bola kaca tersegel yang berisi cairan berwarna untuk efek estetika. Saat suhu berubah, kerapatan cairan di dalam silinder turut berubah yang menyebabkan bola kaca bergerak timbul atau tenggelam untuk mencapai posisi di mana kerapatannya sama dengan cairan sekelilingnya atau terhenti oleh bola kaca lainnya. Bila perbedaan kerapatan bola kaca sangat kecil dan terurutkan sedemikian rupa sehingga yang kurang rapat berada di atas dan yang terapat berada di bawah, hal tersebut dapat membentuk suatu skala suhu.
Suhu dibaca dari ukiran piringan logam di setiap bola kaca. Biasanya sebuah celah memisahkan bola kaca atas dengan bola kaca bawah, berarti nilai suhu berada di antara kedua nilai label baca di setiap sisi celah. Bila bola kaca melayang-layang di celah, berarti nilai label baca mendekati suhu lingkungan.
Untuk mencapai keakuratan yang sesuai, toleransi beban harus dibuat kurang dari 1/1000 per satu gram (1 miligram).[1][2][3].
[sunting] Teori operasi
Bola kaca dari dekat.
Termometer Galilea bekerja dengan prinsip daya apung. Daya apung sendiri menentukan apakah suatu benda mengapung atau tenggelam dalam cairan, serta memberi penjelasan mengapa perahu yang terbuat dari baja bisa mengapung (sementara batangan baja padat dengan sendirinya akan tenggelam).
Satu-satunya faktor yang menentukan apakah suatu objek besar naik atau turun dalam suatu cairan tertentu, berkaitan dengan kerapatan objek terhadap kerapatan cairan di mana ia ditempatkan. Jika massa benda lebih besar dari massa cairan pengisi, objek tersebut akan tenggelam. Jika massa benda kurang dari massa
cairan pengisi, objek tersebut akan mengapung.
TERMOMETER Termistor
Termistor (Inggris: thermistor) adalah alat atau komponen atau sensor elektronika yang dipakai untuk mengukur suhu. Prinsip dasar dari termistor adalah perubahan nilai tahanan (atau hambatan atau werstan atau resistance) jika suhu atau temperatur yang mengenai termistor ini berubah. Termistor ini merupakan gabungan antara kata termo (suhu) dan resistor (alat pengukur tahanan).
Termistor NTC yang tersambung pada kabel terisolasi
Termistor ditemukan oleh Samuel Ruben pada tahun 1930, dan mendapat hak paten di Amerika Serikat dengan nomor #2.021.491. Ada dua macam termistor secara umum: Posistor atau PTC (Positive Temperature Coefficient), dan NTC (Negative Temperature Coefficient). Nilai tahanan pada PTC akan naik jika perubahan suhunya naik, sementara sifat NTC justru kebalikannya.
Termometer air raksa
Termometer air raksa dalam gelas adalah termometer yang dibuat dari air raksa yang ditempatkan pada suatu tabung kaca. Tanda yang dikalibrasi pada tabung membuat temperatur dapat dibaca sesuai panjang air raksa di dalam gelas, bervariasi sesuai suhu. Untuk meningkatkan ketelitian, biasanya ada bohlam air raksa pada ujung termometer yang berisi sebagian besar air raksa; pemuaian dan penyempitan volume air raksa kemudian dilanjutkan ke bagian tabung yang lebih sempit. Ruangan di antara air raksa dapat diisi atau dibiarkan kosong.
Sumber: http://stayalonecrew.blogspot.com/2011/07/macam-macam-termometer.html

PENGERTIAN SUHU

Suhu adalah besaran yang menunjukkan derajat panas suatu benda. Alat ukur suhu disebut termomoter,kalor didefinisikan sebagai energi panas yg dimiliki suatu zat.
macam-macam termometer:
a. Termometer alkohol.
Karena air raksa membeku pada – 400 C dan mendidih pada 3600, maka termometer air raksa hanya dapat dipakai untuk mengukur suhu-suhu diantara interval tersebut. Untuk suhu-suhu yang lebih rendah dapat dipakai alkohol (Titik beku – 1300 C) dan pentana (Titik beku – 2000 C) sebagai zat cairnya.
b. Termoelemen.
Alat ini bekerja atas dasar timbulnya gaya gerak listrik (g.g.l) dari dua buah sambungan logam bila sambungan tersebut berubah suhunya.
c. Pirometer Optik.
Alat ini dapat dipakai untuk mengukur temperatur yang sangat tinggi.
d. Termometer maksimum-minimum Six Bellani.
Adalah termometer yang dipakai untuk menentukan suhu yang tertinggi atau terendah dalam suatu waktu tertentu.
e. Termostat.
Alat ini dipakai untuk mendapatkan suhu yang tetap dalam suatu ruangan.
f. Termometer diferensial.
Dipakai untuk menentukan selisih suhu antara dua tempat yang berdekatan.
Konversi suhu
Skala celsius (titik lebur 0 ⁰C, titik didih 100⁰C)
Skala fahrenheit (titik lebur 32⁰F, titik didih 212⁰F)
Skala reamur (titik lebur 0⁰R, titik didih 80⁰R)
Skala kelvin (titik lebur 273 K, titik didih 373 K)
Perbandingan skala termometer
C : F : R : K = 100 : 180 : 80 : 100 = 5 : 9 : 4 : 5
Perbandingan skala Celcius dan Fahrenheit:
T⁰C={9/5 T+32}⁰F atau T°F={5/9(T-32)}⁰C
Konversi suhu
Skala celsius (titik lebur 0 ⁰C, titik didih 100⁰C)
Skala fahrenheit (titik lebur 32⁰F, titik didih 212⁰F)
Skala reamur (titik lebur 0⁰R, titik didih 80⁰R)
Skala kelvin (titik lebur 273 K, titik didih 373 K)
Perbandingan skala termometer
C : F : R : K = 100 : 180 : 80 : 100 = 5 : 9 : 4 : 5
Perbandingan skala Celcius dan Fahrenheit:
T⁰C={9/5 T+32}⁰F atau T°F={5/9(T-32)}⁰C
 Sumber: https://www.facebook.com/permalink.php?id=416442411806281&story_fbid=450074331776422

Senin, 26 Januari 2015

SUMBER - SUMBER ENERGI

SUMBER-SUMBER ENERGI

 Pengertian sumber energi adalah segala sesuatu di sekitar kita yang mampu menghasilkan energi. Di sekitar kita banyak sekali macam macam sumber energi yang bisa menghasilkan berbagai macam energi:Sumber energi secara garis besar dapat dibedakan menjadi dua kelompok yaitu : 1.  Sumber energi yang terbarukan atau yang dapat diperbaharui dan bisa dipakai tanpa khawatir habis. contohnya :  Energi surya atau matahari Energi matahari sangat melimpah jumlahnya khususnya bagi wilayah yang beriklim tropis. pemanfaatan sinar matahari adalah dengan menggunakan sel surya yang berfungsi mengubah energi surya menjadi energi listrik. Ada juga yang memanfaatkan sinar matrahari untuk memasak dengan menggunakan kompor bertenaga sinar matahari contohnya di negara India.  Panas bumi Panas bumi merupakan energi yang bersumber dari dalam perut bumi, Panas bumi  merupakan energi yang melimpah dan terbarukan sehingga tidak perlu khawatir akan kehabisan energi panas bumi.  Selain jumlahnya yang melimpah energi ini memiliki harga yang lebih ekonomis dan ramah terhadap lingkungan. Indonesia merupakan salah satu negara di dunia yang kaya akan energi panas bumi, hal ini di karenakan indonesia mempunyai banyak gunung berapi aktif  yang menjadi keuntungan tersendiri bagi negara kita. Contoh pemanfaatan panas bumi adalah dengan mengubahnya menjadi pembangkit listrik.  Angin Pemanfaatan energi angin sedang gencar-gencarnya di lakukan oleh banyak negara di seluruh dunia karena sumber energi ini tidak terbatas jumlahnya, pemanfaatan energi ini menggunakan kincir angin yang dihubungkan dengan generator atau turbin untuk menghasilkan tenaga listrik.  Energi Biomassa Biomassa terdiri dari Tanaman hidup, pohon mati, dan serpihan kayu. Energi Gas Alam Merupakan energi yang terbarukan dan harganya lebih terjangkau daripada bahan bakar minyak. Pembangkit listrik Tenaga Air Energi yang bersumber dari tenaga air sudah lama di manfaatkan oleh manusia karena ramah lingkungan dan juga berlimpah. Pembangkit listrik tenaga air atau PLTA merupakan salah satu contoh pemanfaatab tenaga air untuk kehidupan yang lebih baik. Energi Pasang Surut Pasang surut air laut dianggap lebih menjanjikan hasil yang maksimal bila di bandingkan dengan tenaga surya dan tenaga angin. tetapi pemanfaatan energi pasang surut masih sedikit hal ini di karenakan biayanya yang mahal. 2. Sumber Energi Tak Terbarukan Sumber energi jenis ini jumlahnya terbatas dan tidak dapat diperbarui walaupun ada yang bisa diperbaharui tetapi memerlukan waktu yang sangat lama. sumber energi ini saat ini masih merupakan sumber energi utama yang banyak digunakan walaupun banyak pihak yang sudah beralih menggunakan sumber energi alternatif. Contoh sumber energi tak terbarukan adalah: Sumber energi yang berasal dari fosil Sumber energi ini sebenarnya bisa diperbaharui tetapi memerlukan waktu hingga jutaan tahun, berasal dari makhluk hidup yang mati dan terpendam dalam tanah hingga jutaan tahun. contohnya Minyak bumi, batu bara.  Sumber energi yang berasal dari mineral alam Mineral alam bisa dimanfaatkan menjdai sumber energi setelah melalui beberapa proses, contohnya uranium yang bisa menghasilkan energi nuklir.
 sumber: http://www.kopi-ireng.com/2014/09/contoh-sumber-energi.html

Senin, 19 Januari 2015

MAKANAN SEBAGAI SUMBER ENERGI

MAKANAN SEBAGAI SUMBER ENERGI

 
 
Makanan merupakan sumber energi bagi tubuh manusia. Untuk berolahraga, belajar, dan aktivitas lain, kita membutuhkan makanan sebagai sumber energi. Berikut beberapa kandungan bahan kimia yang terdapat dalam makanan yang dapat

digunakan sebagai sumber energi bagi tubuh manusia. Makanan diperlukan oleh tubuh sebagai sumber energi. Dengan asupan makanan yang baik dan cukup, kamu dapat melakukan berbagai aktivitas sehari-hari. Zat makanan yang berperan sebagai sumber energi adalah karbohidrat, lemak, dan protein.
 
Karbohidrat
Karbohidrat merupakan senyawa kimia yang tersusun oleh unsur-unsur karbon. Bahan makanan yang banyak mengandung karbohidrat, misalnya beras, jagung, kentang, gandum, umbi-umbian, dan buah-buahan yang rasanya manis. Karbohidrat berperan sebagai sumber energi (1 gram karbohidrat sama dengan 4 kilo kalori).
 
Protein
Protein merupakan senyawa kimia yang mengandung unsur C, H, O, N (kadang juga mengandung unsur P dan S). Bahan makanan yang mengandung banyak protein, antara lain:
1. protein hewani, misalnya daging, ikan, telur, susu, dan keju.
2. protein nabati, misalnya kacang-kacangan, tahu, tempe, dan gandum.
 
Lemak
Lemak merupakan senyawa kimia yang mengandung unsur C, H, dan O. Peran lemak adalah menyediakan energi sebesar 9 kalori/gram, melarutkan vitamin A, D, E, K, dan menyediakan asam lemak esensial bagi tubuh manusia. Lemak mulai dianggap berbahaya bagi kesehatan setelah adanya suatu penelitian yang menunjukkan hubungan antara kematian akibat penyakit jantung koroner dengan banyaknya konsumsi lemak dan kadar lemak di dalam darah. Penyakit jantung koroner terjadi bila pembuluh darah tersebut tersumbat atau menyempit karena endapan lemak yang secara bertahap menumpuk di dinding arteri.
 
Bahan makanan yang mengandung banyak lemak, antara lain:
- lemak hewani: keju, susu, daging, kuning telur, daging sapi, daging kambing, daging ayam, dan daging bebek
-  lemak nabati: kelapa, kemiri, kacang-kacangan, dan buah avokad.
 
Fungsi lemak, antara lain
1. sumber energi (1 gram lemak sama dengan 9 kilo kalori).
2. pelarut vitamin A, D, E, dan K.
3. pelindung organ-organ tubuh yang penting sebagai bantalan lemak.
4. pelindung tubuh dari suhu yang rendah.

RESPIRASI

respirasi

RESPIRASI
Respirasi dalam biologi adalah proses mobilisasi energi yang dilakukan jasad hidup melalui pemecahan senyawa berenergi tinggi (SET) untuk digunakan dalam menjalankan fungsi hidup. Dalam pengertian kegiatan kehidupan sehari-hari, respirasi dapat disamakan dengan pernapasan. Namun, istilah respirasi mencakup proses-proses yang juga tidak tercakup pada istilah pernapasan. Respirasi terjadi pada semua tingkatan organisme hidup, mulai dari individu hingga satuan terkecil, sel. Apabila pernapasan biasanya diasosiasikan dengan penggunaan oksigen sebagai senyawa pemecah, respirasi tidak melulu melibatkan oksigen.
Pada dasarnya, respirasi adalah proses oksidasi yang dialami SET sebagai unit penyimpan energi kimia pada organisme hidup. SET, seperti molekul gula atau asam-asam lemak, dapat dipecah dengan bantuan enzim dan beberapa molekul sederhana. Karena proses ini adalah reaksi eksoterm (melepaskan energi), energi yang dilepas ditangkap oleh ADP atau NADP membentuk ATP atau NADPH. Pada gilirannya, berbagai reaksi biokimia endotermik (memerlukan energi) dipasok kebutuhan energinya dari kedua kelompok senyawa terakhir ini.
Kebanyakan respirasi yang dapat disaksikan manusia memerlukan oksigen sebagai oksidatornya. Reaksi yang demikian ini disebut sebagai respirasi aerob. Namun, banyak proses respirasi yang tidak melibatkan oksigen, yang disebut respirasi anaerob. Yang paling biasa dikenal orang adalah dalam proses pembuatan alkohol oleh khamirSaccharomyces cerevisiae. Berbagai bakteri anaerob menggunakan belerang (atau senyawanya) atau beberapa logam sebagai oksidator.
Respirasi dilakukan pada satuan sel. Proses respirasi pada organisme eukariotik terjadi di dalam mitokondria.
Sumber: http://id.wikipedia.org/wiki/Respirasi
SISTEM RESPIRASI pada manusia

Respirasi memiliki beberapa definisi yaitu:
  • Proses pengambilan O2 dan pengeluaran CO2 oleh makhluk hidup.
  • Proses pembongkaran senyawa complex menjadi senyawa sederhana.
  • Proses pembongkaran senyawa organik menjadi senyawa anorganik yang terjadi di dalam sel dalam rangka mendapatkan energy atau tenaga
Rumus Respirasi : C6H12O6 + H2O —> 6CO2 + 6H2O + Energi
Berdasarkan definisi diatas maka dapat disimpulkan bahwa respirasi merupakan proses pengambilan oksigen dan pengeluaran karbondioksida dalam rangka memperoleh energi.
Proses respirasi melewati dua tahap yaitu respirasi eksternal dan respirasi internal. Respirasi eksternal merupakan proses respirasi yang berlangsung melalui alat-alat pernapasan. Sedangkan respirasi internal merupakan proses respirasi yang berlangsung di dalam sel ( di dalam sitoplasma dan mitokondria).
Jalur respirasi manusia secara runtut adalah sebagai berikut:

Hidung —> faring —> laring —> trakea —> bronkus —> pulmo —> alveolus —> sel-sel tubuh.
Alat-alat pada pernapasan manusia:
  • Hidung
Hidung merupakan alat pernapasan yang paling awal yang dilalui udara. Di dalam rongga hidung mengalami penyaringan dan penghangatan. Penyaringan ditunjukkan kepada benda-benda asing yang tidak berbentuk gas, misalnya debu. Benda tersebut dihalangi oleh rambut-rambut halus (silia) yang tumbuh keluar. Penghangatan yaitu mengubah suhu udara agar sesuai dengan suhu tubuh. Penghangatan ini terjadi akibat kontaknya silia tersebut dengan permukaan selaput lendir sehingga menjadi lembab. Jaringan yang terdapat di dalam rongga hidung adalah epithelium silindris bersilia.
  • Faring (Rongga Tekak)
Faring merupakan rongga persimpangan antara jalan pernapasan dengan jalan makanan (esophagus). Di dalam faring terdapat katup penutup rongga hidung yang disebut uvula atau anak tekak. Selain itu juga terdapat epiglotis yang berfungsi untuk mengatur pergantian perjalanan pernapasan dan makanan pada persimpangan tersebut.
  • Laring (Pangkal Tenggorokan)
  • Merupakan daerah pangkal batang tenggorokan yang bertindak sebagai daerah pembentukan suara, dimana di dalamnya terdapat tulang rawan yang membentuk jakun. Di dalam laring terdapat selaput suara yang ketegangannya diatur oleh serabut-serabut otot, sehingga dapat menghasilkan tinggi rendahnya nada yang diperlukan.
  • Trakea (Batang Tenggorokan)
Merupakan saluran respirasi yang befungsi sebagai saluran udara dan panjangnya ±10 cm serta terdiri dari 16-20 gelang cincin. Cincin-cincin ini terdiri dari tulang-tulang rawan yang berbentuk seperti kuku kuda (huruf C). Trakea ini terdiri dari 3 lapis yaitu :
  1. a) Lapis luar terdiri atas jaringan ikat
  2. b) Lapis tengah terdiri dari otot polos dan cincin tulang rawan
  3. c) Lapis terdalam terdiri atas jaringan epitel bersilia yang menghasilkan banyak lendir yang berfungsi untuk menangkap dan mengembalikannya ke hulu saluran pernapasan benda-benda asing yang akan masuk ke dalam peru-paru
  • Bronkus (Cabang Batang Tenggorrokan)
Merupakan cabang batang tenggorokan yang terletak di dalam dada. Batang bronkus menuju ke paru-paru kanan dan paru-paru kiri. Paru-paru kanan lebih gampang rusak karena letaknya yang lebih tegak dibanding paru-paru kiri. Di dalam paru-paru tiap bronkus membentuk cabang-cabang yang disebut bronkiolus. Dinding bronkus juga terdiri atas tiga lapis yaitu jaringan ikat, otot polos dan jaringan epitel, seperti pada trakea, perbedaannya adalah dinding trakea jauh lebih tebal dan cincin tulang rawan pada bronkus tidak berbentuk lingkaran sempurna. Sel-sel epitel bersilia pada bronkus semakin lama akan berubah menjadi sisik epitel.
  • Pulmo (Paru-Paru)
Paru-paru terletak di dalam rongga dada di kanan dan kiri jantung dan dilindungi oleh tulang-tulang rusuk yang berbentuk sangkar. Paru-paru dibungkus oleh selaput yang disebut Pleura. Pleura ini merupakan selaput tipis rangkap dua. Diantara selaput tersebut dengan paru-paru terdapat cairan limfa, yang berfungsi untuk melindungi paru-paru dari gesekan pada waktu mengembang dan mengempis. Paru-paru kanan memiliki tiga lobus sedang paru-paru kiri hanya memiliki dua lobus. Mengembang dan mengempisnya paru-paru disebabkan perubahan tekanan dalam rongga dada.
  • Alveolus
Merupakan saluran akhir dari sistem pernapasan. Alveolus berupa gelembung-gelembung udara. Pada bagian alveolus ini terjadi pertukaran oksigen dari udara bebas ke sel-sel darah dan karbondioksida dari darah ke udara bebas. Pertukaran ini terjadi secara difusi yang berhubungan dengan kapiler-kapiler darah. Pada paru-paru terdapat kurang lebih 300 juta alveolus.
Mekanisme Pernapasan
Manusia bernapas melalui dua tahap yaitu inspirasi (menghirup udara) dan ekspirasi (menghembuskan udara). Inspirasi adalah proses pengambilan udara dimana udara masuk ke dalam tubuh. Ekspirasi adalah proses pengeluaran udara dari dalam tubuh.
Berdasarkan otot yang berperan aktif, pernapasan manusia dan mamalia dibedakan menjadi dua yaitu:
  1. Pernapasan Dada
Yang berperan adalah otot-otot antarrusuk atau interkostal untuk menggerakkan tulang-tulang rusuk. Mekenismenya sebagai berikut:
  1. Inspirasi, otot tulang rusuk bagian luar berkontraksi maka tulang rusuk terangkat sehingga volume rongga dada membesar. Akibatnya tekanan dalam paru-paru mengecil sehingga udara diluar mempunyai tekanan yang lebih besar masuk ke dalam paru-paru.
  2. Ekspirasi, bila otot-otot tulang rusuk bagian luar berelaksasi yaitu tulang rusuk dan tulang dada turun kembali sehingga volume rongga dada mengecil. Oleh karena itu tekanan bagian luar paru-paru lebih kecil daripada bagian dalam sehingga udara keluar dari paru-paru.
  1. Pernapasan Perut
Yang berperan dalam pernapasan ini adalah otot diafragma (sekat antara rongga dada dan rongga perut)
Mekanismenya adalah sebagai berikut:
  1. a) Inspirasi, bila otot diafragma berkontraksi sehingga mendatar, maka rongga dada membesar. Oleh karena itu tekanan uara menjadi kecil sehingga udara masuk ke dalam paru-paru.
  2. b) Ekspirasi, bila otot diafragma berelaksasi, maka rongga dada mengecil. Akibatnya tekanan di paru-paru membesar sehingga udara keluar dari paru-paru.
Pertukaran Gas Oksigen dan Karbondioksida dalam Tubuh
Pertukaran gas atau difusi gas respirasi disebabkan karena adanya perbedaan tekanan udara baik oksigen atau karbondioksida.
Faktor-faktor yang menentukan difusi gas respirasi melintasi membra alveolus dan kapiler darah yaitu sebagai berikut:
  1. a) Permeabilitas epithelium /membran respirasi. Jika membran semakin permeable maka semakin cepat proses difusi.
  2. b) Luas permukaan epithelium/membran respirasi. Semakin luas membran respirasinya, maka semakin cepat proses difusi berlangsung.
  3. c) Tekanan parsial gas yang bergantung pada persentasenya dalam seluruh bagian udara, semakin tinggi tekanan parsial, maka semakin cepat proses difusi berlangsung.
  4. d) Kecepatan sirkulasi darah di paru-paru atau insang. Semakin cepat peredaran darah maka semakin cepat pula proses difusinya.
  5. e) Kecepatan reaksi kimia yang terjadi di dalam darah. Semakin cepat reaksi yang terjadi maka semakin cepat pula preses difusinya.
Macam-Macam Volume Udara Pernapasan
ü  Volume udara tidal yaitu volume udara yang masuk dan keluar sebagai akibat pernapasan biasa, besarnya 500 cc.
ü  Volume udara komplementer yaitu volume udara yang dapat masuk ke dalam paru-paru setelah melakukan inspirasi normal, besarnya 1500 cc.
ü  Volume udara suplementer yaitu vvolume udara yang masih dapat dikeluarkan setelah melakukan ekspirasi normal, besarnya sama dengan volume udara komplementer yaitu 1500 cc.
ü  Volume udara residu yaitu volume udara yang tersisa di dalam paru-paru yang tidak dapat diekspirasikan , besarnya 1000 cc.
ü  Kapasitas vital paru-paru yaitu volume udara yang dapat dihembuskan semaksimal mungkin setelah melakukan inspirasi secara maksimal (volume udara tidal + volume udara suplementer + volume udara komplementer), besarnya 3500 cc.
ü  Kapasitas total paru-paru yaitu volume udara yang tertampung secara maksimal di paru-paru (kapasitas vital paru-paru + udara residu) 4500 cc.
Frekuensi Pernapasan Pada Manusia
Secara umum frekuensi pernapasan pada orang dewasa adalah 15-20 kali per menit. Frekuensi pernapasan pada pria lebih cepat dari pada wanita karena pria lebih banyak melakukan aktifitas. Cepat lambatnya frekuensi pernapasan dipengaruhi oleh usia, jenis kelamin, suhu tubuh, posisi tubuh maupun aktivitas tubuh.
sumber: http://humanrespiration.blogspot.com/ & febrianasalvy.wordpress.com